黑料网

Gongfang Hu

Back to Directory
ghu

Gongfang Hu

Assistant Professor of Chemistry

Department/Office Information

Chemistry
200 Wynn Hall

Our lab is a place where "molecular architects" come together to design molecules for catalytic purposes. We don't just aim to create effective catalysts, but we strive to understand why they work the way they do, whether through successful attempts or unexpected results. We are constantly learning and revising our strategies, striving to "think like molecules."

One of our primary focuses is on the element bismuth, which is the heaviest main-group metal with no radioactivity. While transition metals have been widely studied for catalysis, the use of main-group metals for catalysis, especially the ones involving redox steps, are less explored. Our lab is always investigating new molecular compounds containing bismuth as potential catalysts for chemical transformations. We are particularly interested in synthesizing bismuth-based compounds for catalysis powered by electricity, i.e. electrocatalysis, using renewable electricity as the energy source instead of burning fossil fuels. Currently, we study two avenues along this topic: (1) using bismuth as the supporting ligand for transition metals and study their structures, electrochemical properties, and potentially catalytic reactivities; (2) synthesizing non-trigonal bismuth-centered compounds and study their structures and redox properties. 

As a student in our lab, you will gain invaluable knowledge across a broad spectrum of fields, including renewable energy sciences, chemical catalysis, synthesis, and electrochemistry. You will also learn practical skills such as organic and inorganic synthesis under normal or air-free conditions, molecular structural determination, electrochemical techniques, electrode preparation, and catalytic analysis. We welcome undergraduates who are passionate about these research directions to discuss possible research opportunities with us. We are excited to see what we can achieve together!

  • Postdoctoral Associate (w. Gary Brudvig and Bob Crabtree), Yale University, New Haven, CT, USA, 2018鈥2022
  • PhD in Chemistry (w. Jon Lindsey), North Carolina State University, Raleigh, NC, USA, 2013鈥2018
  • BS in Chemistry (w. Ping Lu), Zhejiang University, Hangzhou, Zhejiang, China, 2009鈥2013

CHEM 263 Organic Chemistry I and Lab

CHEM 264 Organic Chemistry II and Lab

CHEM 415 Organometallic Chemistry

CHEM 461 Organic Reaction Mechanism

CHEM 481 Advanced Chemistry Research

CHEM 482 Advance Chemistry Research

Independent Publications at 黑料网

Undergraduate Co-Authors in Bold

25.  Gates, K.; Aoyama, Y.; Cao, H.; Hu, G.* "Synthesis and Redox Properties of Nickel Pincer Complexes Featuring an X-type Bismuth Ligand," ChemRxiv, DOI: . 

24.  Cao, H.鈥; Aoyama, Y.鈥; Mast, K.; Zhu, R.; Hu, G.* "Precatalyst Evolution in PBiP-Pd Complexes for Electrocatalytic Proton Reduction," ChemRxiv, DOI: . 鈥燛qual Contribution.

23.  Kwon, G*; Kisslinger, K.; Hwang, S.; Wright, G.; Layne, B.; Zhong, H.; Pattammattel, A.; Lynch, J.; Kim, J.; Hu, G.; Brudvig, G. W.; Lee, W.-I.; Nam, C.-Y. "Multielectrode Electrochemical Cell for in situ Structural Characterization of Amorphous Thin-Film Catalysts Using High-Energy X-Ray Scattering," J. Appl. Crystallogr. 2023, 56, 1392鈥1402.

Supervised Publications Prior to 黑料网

22.  Liu, H.-Y.; Lant, H.; Troiano, J. T.; Hu, G.; Mercado, B. Q.; Crabtree, R. H.*; Brudvig, G. W.* 鈥淓lectrocatalytic, Homogeneous Ammonia Oxidation in Water to Nitrate and Nitrite with a Copper Complex,鈥 J. Am. Chem. Soc. 2022, 144, 8449鈥8453.

21.   Bozal-Ginesta, C.; Rao, R.; Mesa, C. A.; Wang, Y.; Zhao, Y.; Hu, G.; Ant贸n-Garc铆a, D.; Stephens, I.; Reisner, E.; Brudvig, G. W.; Wang, D.; Durrant, J.* 鈥淪pectroelectrochemistry of Water Oxidation Kinetics in Molecular versus Heterogeneous Oxide Iridium Electrocatalysts,鈥 J. Am. Chem. Soc. 2022, 144, 8454鈥8459.

20.   Hu, G.; Troiano, J. T.; Tayvah, U. T.; Sharninghausen, L. S.; Sinha, S. B.; Shopov, D. Y.; Crabtree, R. H.*; Brudvig, G. W.* 鈥淎ccessing Molecular Dimeric Ir Water-Oxidation Catalysts from Coordination Precursors鈥, Inorg. Chem. 2021, 60, 14349鈥14356.

19.  Kwon, G.*; Chang, S. H.*; Eun, H. J.; Lee, K. J.; Kim, J.-K.; Cho, B.-G.; Koo, T. Y.; Kim, B. J.; Kim, C.; Lee, J. H.; Bak, S.-M.; Beyer, K. A.; Zhong, H.; Koch, R.; Hwang, S.; Hu, G.; Brudvig, G. W.; Tiede, D. M.; Kim, J.* 鈥淓xperimental Verification of Ir 5d Orbital States and Atomic Structures in Highly Active Amorphous Iridium Oxide Catalysts,鈥 ACS Catal. 2021, 11, 10084鈥10094.

18. Pattengale, B.; Neu, J.; Tada, A.; Hu, G.; Karpovich, C. J.; Brudvig, G. W.* 鈥淐ation-Exchanged Conductive Mn2DSBDC Metal-Organic Frameworks: Synthesis, Structure, and THz Conductivity,鈥 Polyhedron 2021, 203, 115182.

17.  Hu, G.; Crabtree, R. H.*; Brudvig, G. W.* 鈥淥rganometallic Complexes as Preferred Precursors to Form Molecular Ir(Pyalk) Coordination Complexes for Catalysis of Oxygen Evolution,鈥 Inorg. Chem. Acta 2021, 526, 120507.

16.  Liu, R.; Liu, S.; Hu, G.; Lindsey, J. S.* 鈥淎queous Solubilization of Hydrophobic Tetrapyrrole Macrocycles by Attachment to an Amphiphilic Single-Chain Nanoparticle (SCNP),鈥 New J. Chem. 2020, 44, 21293鈥21308.

15.  Wu, Y.#; Hu, G.#; Brudvig, G. W.*; Wang, H.* 鈥淗eterogeneous Nature of Electrocatalytic CO/CO2 Reduction by Cobalt Phthalocyanines,鈥 ChemSusChem 2020, 13, 6296鈥6299. (# indicates co-first authorship)

14.  Troiano, J. L.; Hu, G.; Crabtree, R. H.*; Brudvig, G. W.* 鈥淒iazo Coupling for Surface Attachment of Small Molecules to TiO2 Nanoparticles,鈥 Chem. Commun. 2020, 56, 9340鈥9343.

13.  Hu, G.#; Jiang, J.#; Kelly, H. R.; Matula, A. J.; Wu, Y.; Romano, N.; Mercado, B. Q.; Wang, H.*; Batista, V. S.; Crabtree, R. H.; Brudvig, G. W.* 鈥淪urprisingly Big Linker-Dependence of Activity and Selectivity in CO2 Reduction by an Iridium(I) Pincer Complex,鈥 Chem. Commun. 2020, 56, 9126鈥9129. (# indicates co-first authorship)

12. Pattengale, B.; Neu, J.; Ostresh, S.; Hu, G.; Spies, J. A.; Okabe, R.; Brudvig, G. W.*; Schmuttenmaer, C. A.* 鈥淢etal鈥揙rganic Framework Photoconductivity via Time-Resolved Terahertz Spectroscopy,鈥 J. Am. Chem. Soc. 2019, 141, 9793鈥9797.

11.  Lee, S. H.#; Matula, A. J.#; Hu, G.; Troiano, J. L.; Karpovich, C. J.; Crabtree, R. H.*; Batista, V. S.*; Brudvig, G. W.* 鈥淪trongly Coupled Phenazine-Porphyrin Dyads: Light Harvesting Molecular Assemblies with Broad Absorption Coverage,鈥 ACS Appl. Mater. Interfaces 2019, 11, 8000鈥8008. (# indicates co-first authorship)

10.  Hu, G.; Kang, H. S.; Mandal, A. K.; Roy, A.; Kirmaier, C.; Bocian, D. F.*; Holten, D.*; Lindsey, J. S.* 鈥淪ynthesis of Arrays Containing Porphyrin, Chlorin, and Perylene-imide Constituents for Panchromatic Light-Harvesting and Charge Separation,鈥 RSC Adv. 2018, 8, 23854鈥23874.

9.  Taniguchi, M.; Hu, G.; Liu, R.; Du, H.; Lindsey, J. S.* 鈥淩ed and Near-Infrared Fluorophores Inspired by Chlorophylls. Consideration of Practical Brightness in Multicolor Flow Cytometry and Biomedical Sciences,鈥 Proc. S.P.I.E. 2018, Vol. 10508, 1050806.

8.  Mandal, A. K.; Diers, J. R.; Niedzwiedzki, D. M.; Hu, G.; Liu, R.; Alexy, E. J.; Lindsey, J. S.*; Bocian, D. F.*; Holten, D.* 鈥淭ailoring Panchromatic Absorption and Excited-State Dynamics of Tetrapyrrole鈥揅hromophore (Bodipy, Rylene) Arrays. The Interplay of Orbital Mixing and Configuration Interaction,鈥 J. Am. Chem. Soc. 2017, 139, 17547鈥17564.

7.  Zhang, S.; Reddy, M. N.; Mass, O.; Kim, H.-J.; Hu, G.; Lindsey, J. S.* 鈥淪ynthesis of Tailored Hydrodipyrrins and Their Examination in Directed Routes to Bacteriochlorins and Tetradehydrocorrins,鈥 New J. Chem. 2017, 41, 11170鈥11189.

6.  Hu, G.#; Amanpour, A.#; Alexy, E. J.; Mandal, A. K.; Kang, H. S.; Yuen, J. M.; Diers, J. R.; Bocian, D. F.*; Lindsey, J. S.*; Holten, D.* 鈥淭uning the Electronic Structure and Properties of Perylene鈥揚orphyrin鈥揚erylene Panchromatic Absorbers,鈥 J. Phys. Chem. A 2016, 120, 7434鈥7450. (# indicates co-first authorship)

5.  Hu, G.; Liu, R.; Alexy, E. J.; Mandal, A. K.; Bocian, D. F.*; Holten, D.*; Lindsey, J. S.* 鈥淧anchromatic Chromophore鈥揟etrapyrrole Light-Harvesting Arrays Constructed from Bodipy, Perylene, Terrylene, Porphyrin, Chlorin, and Bacteriochlorin Building Blocks,鈥 New J. Chem. 2016, 40, 8032鈥8052.

4.  Hu, X.; Hu, G.; Crawford, K.; Gorman, C. B. 鈥淐omparison of the Growth and Degradation of Poly(glycolic acid) and Poly(e-caprolactone) Brushes,鈥 J. Poly. Sci. Part A: Poly. Chem. 2013, 51, 4643鈥4649.

3. Li, J.; Hu, G.; Wang, N.; Hu, T.; Wen, Q.; Lu, P.*; Wang, Y.* 鈥淥ligo(3,6-phenanthrene ethynylenes): Synthesis, Characterization, and Photoluminescence,鈥 J. Org. Chem. 2013, 78, 3001鈥3008.

2.  Li, J.; Hu, G.; Li, X.; Hu, B.; Wang, N.; Lu, P.*; Wang, Y.* 鈥9,11,12,14-Tetraaryldibenzo[f,h]imidazo[1,2-b]isoquinolines and Their Emission Responses to Solvent Polarity, Acidity, and Nitroarenes,鈥 Eur. J. Org. Chem. 2013, 7320鈥7327.

1.  Li, J.; Hu, B.; Hu, G.; Li, X.; Lu, P.*; Wang, Y.. 鈥淎n Efficient Synthesis of Heptaaryldipyrromethenes from Tetraarylcyclopentadienones and Ammonium Acetate and Their Extension of the Corresponding BODIPYs,鈥 Org. Biomol. Chem. 2012, 10, 8848鈥8859.